Studies on organolanthanide complexes

XXXIX ${ }^{\dagger}$. Synthesis and molecular structure of (MeCp$)_{3} \mathrm{La}$ ($\mathrm{MeCp}=\mathrm{CH}_{3} \mathrm{C}_{5} \mathrm{H}_{4}$): a tetrameric complex of the type $\left[(\mathrm{MeCp})_{3} \mathrm{La}\right]_{4}$

Zuowei Xie, F. Ekkehardt Hahn ${ }^{1}$ and Changtao Qian *
Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032 (People's Republic of China)

(Received April 19th, 1991)

Abstract

Reaction of LaCl_{3} with excess $\mathrm{Na}(\mathrm{MeCp} \text {) in THF, followed by sublimation, affords (} \mathrm{MeCp})_{3} \mathrm{La}$. The complex crystallizes as a tetramer $\left[(\mathrm{MeCp})_{3} \mathrm{La}\right]_{4}$ in the monoclinic space group $P 2_{1} / c$ with unit cell dimensions $a 9.6785(14), b 26.058(5), c 12.506(2) \AA, \beta 97.724(13)^{\circ}$ and $Z=2$ (tetramers).

Up to now, the molecular structures of the following tricyclopentadienyl lanthanide complexes have been reported: $\mathrm{Cp}_{3} \mathrm{Sc}$ [2], $\mathrm{Cp}_{3} \operatorname{Pr}$ [3], $\mathrm{Cp}_{3} \mathrm{Nd}$ [4], $\mathrm{CP}_{3} \mathrm{La}$ [5], $\mathrm{Cp}_{3} \mathrm{Er}$ [6], $\mathrm{Cp}_{3} \mathrm{Tm}[6], \mathrm{Cp}_{3} \mathrm{Yb}$ [7], $\mathrm{Cp}_{3} \mathrm{Lu}$ [8], $(\mathrm{MeCp})_{3} \mathrm{Nd}$ [9], (MeCp$)_{3} \mathrm{Yb}$ [10], $(\mathrm{MeCp})_{3} \mathrm{Ce}$ [11], and $\left[\left(\mathrm{Me}_{3} \mathrm{Si}_{2} \mathrm{C}_{5} \mathrm{H}_{3}\right]_{3} \mathrm{Ce}\right.$ [11]. The results of above structural analyses suggest that the solid-state structures of the trivalent lanthanide metallocenes are dependent on the lanthanide metals as well as the size of the substituents on the cyclopentadienyl rings. For example, (MeCp$)_{3} \mathrm{Nd}$ is tetrameric while $\mathrm{Cp}_{3} \mathrm{Nd}$ is a polymer $[9,10]$; $(\mathrm{MeCp})_{3} \mathrm{Ce}$ is tetrameric while $\left[\left(\mathrm{Me}_{3} \mathrm{Si}_{2} \mathrm{C}_{5} \mathrm{H}_{3}\right]_{3} \mathrm{Ce}\right.$ and $\left(\mathrm{Me}_{3} \mathrm{SiC}_{5} \mathrm{H}_{4}\right)_{3} \mathrm{Ce}$ are monomers [11]. An interesting question is how is the molecular structure of (MeCp$)_{3} \mathrm{La}$ compared to the polymeric $\eta^{2}: \eta^{5}-\mathrm{Cp}_{3} \mathrm{La}$ [5].

We report the crystal structure of solvent-free $(\mathrm{MeCp})_{3} \mathrm{La}$ (1) prepared by the reaction of LaCl_{3} with excess (MeCp) Na in THF, followed by vacuum sublimation [12*]. Single crystals suitable for an X-ray study were obtained from a toluene solution at room temperature.

[^0]

Fig. 1. Orter drawing of one tetramer $\left[(\mathrm{MeCp})_{3} \mathrm{La}\right]_{4}$ (two asymmetric units). Starred atoms represent transformed coordinates of the type $1-x,-y,-z$. Cp denotes the centroids of the cyclopentadienyl rings. Important bond distances (\AA) and angles $\left({ }^{\circ}\right)$: LaA-Cp1A 2.553(7), LaA-Cp2A 2.569(7), LaACp3A 2.637(7), LaB-Cp1B 2.601(7), LaB-Cp2B 2.555(7), LaB-Cp3B 2.630(7), LaA-C15B 2.972(5), LaB-C15A* 3.064(6), Cp1A-LaA-Cp2A 116.5(2), CP1A-LaA-Cp3A 121.4(2), Cp2A-LaA Cp3A 113.8(2), Cp1B-LaB-Cp2B 119.5(2), Cp1B-LaB-Cp3B 114.5(2), Cp2B-LaB-Cp3B 115.0(2), LaA-C15A-LaB* 168.8(3), LaB-C15B-LaA 178.5(2).

The X-ray structure analysis [13* $]$ shows that (MeCp$)_{3} \mathrm{La}$ crystallizes as a tetramer, $\left[(\mathrm{MeCp})_{3} \mathrm{La}\right]_{4}$. Figure 1 shows one tetramer with the adopted numbering scheme. The structure of 1 differs significantly from that of $\mathrm{Cp}_{3} \mathrm{La}$ [5]. The methyl substituent on the cyclopentadienyl ring forces the mode of coordination from an $\eta^{2}: \eta^{5}$ polymer for $\mathrm{Cp}_{3} \mathrm{La}$ [5] to an $\eta^{1}: \eta^{5}$ tetramer for 1.

In (MeCp$)_{3} \mathrm{La}$, each La atom is surrounded by two terminal $\eta^{5}-\mathrm{MeCp}$ groups and a bridging MeCp group which is η^{5}-bonded to one lanthanum atom and η^{1}-bonded to an adjacent lanthanum atom. Thus the coordination number of the La atoms is ten. The geometry of tetrameric $(\mathrm{MeCp})_{3} \mathrm{La}$ is nearly identical with those of its cerium and neodymium analogues $(\mathrm{MeCp})_{3} \mathrm{Ln}(\mathrm{Ln}=\mathrm{Ce}(2), \mathrm{Nd}(3))$ [9,11]. The average $\eta^{1}-\mathrm{C}-\mathrm{Ln}$ distance is $3.018(7) \AA$ in $\mathbf{1}, 3.03(3) \AA$ in 2 and 2.984(3) \AA in 3 .

The $\operatorname{Ln}-\mathrm{C}\left(\eta^{5}-\mathrm{MeCp}\right)$ distance in $\mathbf{1}$ is $2.843(3) \AA$, in $\mathbf{2}$ it is $2.83(4) \AA$ and in $\mathbf{3}$ it is $2.79(4) \AA$. The $\mathrm{Cp}-\mathrm{Ln}-\mathrm{Cp}$ angles (Cp denotes the centroids of the cyclopentadienyl rings) are almost identical for all three derivatives at 117°. The differences in bond length are most reasonably ascribed to the lanthanide contraction.

Acknowledgement. This research was supported by a grant from director of Shanghai Institute of Organic Chemistry. F.E. Hahn thanks the Laboratory of Organometallic Chemistry, Chinese Academy of Sciences for financial support and the Max-Planck Gesellschaft for a travel grant to China.

References and notes

1 Z. Xie, C. Qian and Y. Huang, J. Organomet. Chem., 412 (1991) 61.
2 J.L. Atwood and K.D. Smith, J. Am. Chem. Soc., 95 (1973) 1488.
3 W. Hinrichs, D. Melzer, M. Rehwoldt, W. Jahn and R.D. Fischer, J. Organomet. Chem., 251 (1983) 299.

4 W. Jahn, W. Hinrichs and R.D. Fischer, unpublished results, see R.D. Fischer and X.F. Li, J. Less-Common. Met., 112 (1985) 303.
5 S.H. Eggers, J. Kopf and R.D. Fischer, Organometallics, 5 (1986) 383.
6 S.H. Eggers, W. Hinrichs, J. Kopf, W. Jahn and R.D. Fischer, J. Organomet. Chem., 311 (1986) 313.
7 S.H. Eggers, J. Kopf and R.D. Fischer, Acta Crystallogr. C, 43 (1987) 2288.
8 S.H. Eggers, H. Schultze, J. Kopf and R.D. Fischer, Angew. Chem., 98 (1986) 631.
9 J.H. Burns, W.H. Baldwin and F.H. Fink, Inorg. Chem., 13 (1974) 1916
10 A. Hammel, W. Schwarz and J. Weidlein, J. Organomet. Chem., 363 (1989) C29.
11 S.D. Stults, R.A. Andersen and A. Zalkin, Organometallics, 9 (1990) 115.
12 Reaction of $3.17 \mathrm{~g}(12.92 \mathrm{mmol})$ of LaCl_{3} with $33.0 \mathrm{ml}(50.10 \mathrm{mmol})$ of $\mathrm{Na}(\mathrm{MeCp})$ in 70 ml of THF overnight, followed by sublimation at $200-230^{\circ} \mathrm{C} / 10^{-3} \mathrm{mmHg}$, gave white crystals, 2.50 g (yield 51.5%). Anal. Found: C, 57.22 ; H, 5.84. $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{La}$ calc.: C, 57.46 ; H, 5.63%. MS (EI): $751\left(2 \mathrm{M}^{+} 1\right)$, $673\left([2 \mathrm{M}-\mathrm{MeCp}]^{+}\right), 376\left(\mathrm{M}^{+}\right), 297\left(\left[(\mathrm{MeCp})_{2} \mathrm{La}\right]^{+}\right), 217\left([(\mathrm{MeCp}) \mathrm{La}]^{+}\right)$.
13 Crystal data for $\left[(\mathrm{MeCp})_{3} \mathrm{La}_{4}: \mathrm{C}_{72} \mathrm{H}_{84} \mathrm{La}_{4}, \quad M=1505.12\right.$. Crystals are monoclinic, space group $P 2_{1} / c$ (no. 14), a $9.6785(14), b 26.058(5), c 12.506(2) \AA . \beta 97.724(13)^{\circ} . V 3125(2) \AA^{3} . d_{\mathrm{c}} 1.60 \mathrm{~g}$ cm^{-3} for $Z=2, \mu 27.3 \mathrm{~cm}^{-1}$. Data collection on a CAD-4 diffractometer at $24(4)^{\circ} \mathrm{C}$ with Mo- K_{α} radiation ($\lambda 0.71073 \AA$), crystal size $0.35 \times 0.38 \times 0.42 \mathrm{~mm}, 2 \theta$ range $2^{\circ} \leqslant 2 \theta \leqslant 50^{\circ}$, systematic absences uniquely defined the space group to be $P 2_{1} / c$. Data reduction with Lorentz, polarization and absorption correction gave 5031 unique reflections. Solution with Patterson methods, refinement with Fourier and least-squares methods gave $R=0.032, R_{n^{\prime}}=0.053$ and $G O F=2.084$ for 4339 reflections $F_{o}^{2} \geqslant 3 \sigma\left(F_{0}^{2}\right)$ and 343 parameters.

[^0]: ${ }^{\dagger}$ For Part XXXVIII see ref. 1.
 ${ }^{1}$ Visiting scholar from Department of Chemistry, Technische Universität Berlin, Straße des 17. Juni 135, W-1000 Berlin 12, Gennany. Address inquiries regarding X-ray diffraction results to this author.

 * Reference number with asterisk indicates a note in the list of references.

